Enumerative geometry and knot invariants

نویسنده

  • Marcos Mariño
چکیده

We review the string/gauge theory duality relating Chern-Simons theory and topological strings on noncompact Calabi-Yau manifolds, as well as its mathematical implications for knot invariants and enumerative geometry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Point of View in the Theory of Knot and Link Invariants

Recent progress in string theory has led to a reformulation of quantum-group polynomial invariants for knots and links into new polynomial invariants whose coefficients can be understood in topological terms. We describe in detail how to construct the new polynomials and we conjecture their general structure. This leads to new conjectures on the algebraic structure of the quantum-group polynomi...

متن کامل

Enumerative invariants of stongly semipositive real symplectic six-manifolds

Following the approach of Gromov and Witten [4, 22], we define invariants under deformation of stongly semipositive real symplectic six-manifolds. These invariants provide lower bounds in real enumerative geometry, namely for the number of real rational J-holomorphic curves which realize a given homology class and pass through a given real configuration of points.

متن کامل

A short overview of the ”Topological recursion”

This is the long version of the ICM2014 proceedings. It consists in a short overview of the ”topological recursion”, a relation appearing in the asymptotic expansion of many integrable systems and in enumerative problems. We recall how computing large size asymptotics in random matrices, has allowed to discover some fascinating and ubiquitous geometric invariants. Specializations of this method...

متن کامل

Enumerative invariants of stongly semipositive real symplectic manifolds

Following the approach of Gromov and Witten [3, 20], we define invariants under deformation of stongly semipositive real symplectic manifolds provided essentially that their real locus is Pin. These invariants provide lower bounds in real enumerative geometry, namely for the number of real rational J-holomorphic curves which realize a given homology class and pass through a given real configura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002